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Abstract. In this paper we propose the general software engineering approach
of transforming an agent into an Agent Computational Environment (ACE) com-
posed of: 1) the “main” agent program; 2) a number of Event-Action modules for
Complex Event Processing, including generation of complex actions; 3) a number
of external contexts that the agent is able to access in order to gather information.
In our view an ACE is composed of heterogeneous elements: therefore, we do
not make assumptions about how the various components are defined, except that
they are based upon Computational Logic. In order to show a concrete instance
of ACE, we discuss an experiment based upon the DALI agent-oriented program-
ming language and Answer Set Programming (ASP).

1 Introduction

Event processing (also called CEP, for “Complex Event Processing”) has emerged as
a relevant new field of software engineering and computer science [1, 2]. In fact, a lot
of practical applications have the need to actively monitor vast quantities of event data
to make automated decisions and take time-critical actions (the reader may refer to the
Proceedings of the RuleML Workshop Series). Several products for event processing
have appeared on the market, provided by major software vendors and by start-up com-
panies. Many of the current approaches are declarative and based on rules, and often
on logic-programming-like languages and semantics: for instance, [3] is based upon a
specifically defined interval-based Event Calculus [4].

Complex Event Processing is particularly important in software agents. Naturally
most agent-oriented languages, architectures and frameworks are to some extent event-
oriented and are able to perform event-processing. The issue of Event Processing
Agents (EPAs) is of growing importance in the industrial field, since agents and multi-
agent systems are able to manage rapid change and thus to allow for scalability in
applications aimed at supporting the ever-increasing level of interaction.

This paper is concerned with logical agent-oriented languages and frameworks, i.e.,
those approaches whose semantics is rooted in Computational Logic. There are several
such approaches, some mentioned below (for a recent survey cf., e.g., [5]). For lack
of space, we are not able here to discuss and compare their event-processing features.
Rather, we recall only the ones that have more strongly influenced the present work.

A recent but well-established and widely used approach to CEP in computational
logic is ETALIS [6, 7], which is an open source plug-in for Complex Event Processing



implemented in prolog which runs in many Prolog systems (available at URL http://

code.google.com/p/etalis/). ETALIS is in fact based on a declarative semantics,
grounded in Logic Programming. Complex events can be derived from simpler events
by means of deductive rules. ETALIS, in addition, supports reasoning about events,
context, and real-time complex situations, and has a nice representation of time and
time intervals aimed at stream reasoning. Relations among events can be expressed via
several operators, reminiscent of those of causal reasoning and Event Calculus.

In the realm of logical agents, some work about CEP is presented in [8] and [9],
which discuss the issue of complex reactivity by considering the possibility of selecting
among different applicable reactive patterns by means of simple preferences. In [10],
more complex forms of preferences among possible reactive behaviors are introduced.
Such preferences can be also defined in terms of “possible worlds” elicited from a
declarative description of a current or hypothetical situation, and can depend upon past
events, and the specific sequence in which they occurred. [11] and [12, 13] discuss
event-based memory-management, and temporal-logic-based constraints for complex
dynamic self-checking and reaction.

Teleo-Reactive Computing by Kowalski and Sadri [14, 15] is an attempt to recon-
cile and combine conflicting approaches in logic programming, production systems,
active and deductive databases, agent programming languages, and the representation
of causal theories in AI, also considering complex events. In this approach, enhanced
reactive rules determine the interaction of an agent with the environment in a logical but
not necessarily “just” deductive way. The semantics relies upon an infinite Herbrand-
like model which is incrementally constructed.

In this paper, we propose a novel conceptual view of Complex Event Processing
in logical agents and a formalization of the new approach. We observe that a complex
event cannot always result from simple deterministic incremental aggregation of simple
events. Rather, an agent should be able to possibly interpret a set of simple events in
different ways, and to choose among possible interpretations. We also consider com-
plex actions, seen as agent-generated events. To this aim, we propose to equip agents
with specific modules, that we call Event-Action modules (whose first general idea was
provided in [16, 17]), describing complex events and complex actions. Such modules
are activated by a combination of simple events, and may return: (i) possible interpreta-
tions of a set of simple events in terms of complex events; (iii) detection of anomalies;
(iv) (sets of) actions to perform in response. An Event-Action module is re-evaluated
whenever new instances of the “triggering” events become available, and may adopt any
reasoning technique, including preferences, to identify plausible scenarios and make a
choice in case of several possibilities.

Each agent can be in principle equipped with a number of such modules, possi-
bly defined in different languages/formalisms. Also, in order to reason about events an
agent may have to resort to extracting knowledge from heterogeneous external sources,
that in general cannot be “wrapped” and considered as agents. We draw inspiration
from the Multi-Context Systems (MCS) approach, which has been proposed to model
information exchange among several knowledge sources [18–20]. MCSs are purposely
defined so as to avoid the need to make such sources in some sense homogeneous:
rather, the approach deals explicitly with their different representation languages and



semantics. Heterogeneous sources are called “contexts” and in the MCS understanding
are fundamentally different from agents: in fact, contexts do not have reactive, proactive
and social capabilities, while it is assumed that they can be queried and updated. MCSs
have evolved from the simplest form [18] to managed MCS (mMCS) [21], and reactive
mMCS [20] for dealing with external inputs such as a stream of sensor data. MCSs
adopt “bridge rules” for knowledge interchange, which are special rules assumed to be
applied whenever applicable, so that contexts are constantly “synchronized”.

In this paper we propose the software engineering approach of transforming an
agent into an Agent Computational Environment (ACE) composed of: 1) the “main”
agent program, or “basic agent”; 2) a number of Event-Action modules; 3) a number of
external contexts that the agent is able to access. We assume the following. (i) Agents
and modules can query (sets of) contexts, but not vice versa. (ii) Agents and modules are
equipped, like contexts in MCSs, with bridge rules for knowledge interchange. Their
application is however not only aimed at extracting knowledge from contexts, but also
at knowledge interchange among the basic agent and Event-Action modules. On the
one hand modules can access the agent’s knowledge base, on the other hand the agent
can access modules’ conclusions. (iii) We do not make assumptions about how the vari-
ous components are defined, except that they are based upon Computational Logic. We
propose a full formalization with a semantics, where again we draw inspiration from
MCSs’ equilibrium semantics, on which we make necessary non-trivial enhancements.
However, we devise a smooth extension which introduces as little additional technical
machinery as possible. The approach proposed here introduces substantial advance-
ments with respect to preliminary work presented in [16, 17]. The formalization and the
semantics are fully novel.

To demonstrate practical applicability of ACEs, we discuss a prototypical exam-
ple that we have experimented by using the DALI agent-oriented language [22, 23]. In
the experimental setting we have adopted Answer Set Programming (ASP) for imple-
menting Event-Action modules. In fact, Answer Set Programming (cf., among many,
[24–27]) is a well-established logic programming paradigm where a program may have
several (rather than just one) “model”, called “answer set”, each one representing a
possible interpretation of the situation described by the program. We show how ASP-
based Event-Action modules can be defined in a logic-programming-like fashion (we
adopt in particular a DALI-like syntax) and then translated into ASP and executed via
an ASP plugin integrated into the DALI interpreter. We define precise guidelines for the
translation, and provide a practical example.

The paper is organized as follows. In Section 2 we provide the necessary back-
ground on MCSs. In Section 3 we present the proposal, its formal definition and its
semantics. In Sections 4 and 5 we discuss one particular instance, based upon DALI
and ASP modules. Finally, in Section 6 we discuss some related work and conclude.

2 Background

Managed Multi-Context systems (mMCS) [19, 21, 20]) model the information flow
among multiple possibly heterogeneous data sources. The device for doing so is con-
stituted by “bridge rules”, which are similar to prolog or, more precisely, datalog rules



(cf., e.g., [28] a for survey about datalog and prolog and the references therein for more
information) but allow for knowledge acquisition from external sources, as in each el-
ement of their “body” the “context”, i.e. the source, from which information is to be
obtained is explicitly indicated. In the short summary of mMCS provided below we
basically adopt the formulation of [20], which is simplified w.r.t. [21].

Reporting from [19], a logic L is a triple (KBL;CnL;ACCL), where KBL is the
set of admissible knowledge bases of L, which are sets of KB-elements (“formulas”);
CnL is the set of acceptable sets of consequences, whose elements are data items or
”facts” (in [19] these sets are called “belief sets”; we adopt the more neutral terminology
of “data sets”); ACCL : KBL → 2CnL is a function which defines the semantics of
L by assigning each knowledge-base an “acceptable” set of consequences. A managed
Multi-Context System (mMCS) M = (C1, . . . , Cn) is a heterogeneous collection of
contexts Ci = (Li; kbi; bri) where Li is a logic, kbi ∈ KBLi

is a knowledge base
(below “knowledge base”) and bri is a set of bridge rules. Each such rule is of the
following form, where the left-hand side o(s) is called the head, also denoted as hd(ρ),
the right-hand side is called the body, also denoted as body(ρ), and the comma stand
for conjunction.

o(s)← (c1 : p1), . . . , (cj : pj),
not (cj+1 : pj+1), . . . , not (cm : pm).

For each bridge rule included in a context Ci, it is required that kbi ∪ o(s) belongs
to KBLi and, for every k ≤ m, ck is a context included in M , and each pk belongs
to some set in KBLk

. The meaning is that o(s) is added to the consequences of kbi
whenever each atom pr, r ≤ j, belongs to the consequences of context cr, while in-
stead each atom pw, j < w ≤ m, does not belong to the consequences of context cs.
While in standard MCSs the head s of a bridge rule is simply added to the “destination”
context’s knowledge base kb, in managed MCS kb is subjected to an elaboration w.r.t.
s according to a specific operator o and to its intended semantics: rather than simple
addition. Formula s itself can be elaborated by o, for instance with the aim of making it
compatible with kb’s format, or via more involved elaboration.

If M = (C1, . . . , Cn) is an MCS, a data state or, equivalently, belief/knowledge
state, is a tuple S = (S1, . . . , Sn) such that each Si is an element of Cni. Desirable
data states are those where each Si is acceptable according to ACCi. A bridge rule ρ is
applicable in a knowledge state iff for all 1 ≤ i ≤ j : pi ∈ Si and for all j + 1 ≤ k ≤
m : pk 6∈ Sk. Let app(S) be the set of bridge rules which are applicable in a data state
S.

For a logic L, FL = {s ∈ kb | kb ∈ KBL} is the set of formulas occurring in
its knowledge bases. A management base is a set of operation names (briefly, opera-
tions) OP , defining elaborations that can be performed on formulas, e.g., addition of,
revision with, etc. For a logic L and a management base OP , the set of operational
statements that can be built from OP and FL is FOPL = {o(s) | o ∈ OP, s ∈ FL}.
The semantics of such statements is given by a management function, which maps a
set of operational statements and a knowledge base into a modified knowledge base.
In particular, a management function over a logic L and a management base OP is a
function mng : 2F

OP
L × KBL → 2KBL \ ∅. The management function is crucial for



knowledge incorporation from external sources, as it is able to perform any elaboration
on the knowledge base given the acquired information.

Semantics of mMCS is in terms of equilibria. A data state S = (S1, . . . , Sn) is
an equilibrium for an MCS M = (C1, . . . , Cn) iff, for 1 ≤ i ≤ n, kb′i = Si ∈
ACCi(mngi(app(S), kbi)) . Thus, an equilibrium is a global data state composed of
acceptable data states, one for each context, encompassing inter-context communication
determined by bridge rules and the elaboration resulting from the operational statements
and the management functions.

Equilibria may not exist (where conditions for existence have been studied, and
basically require the avoidance of cyclic bridge-rules application), or may contain in-
consistent data sets (local inconsistency, w.r.t. local consistency). A management func-
tion is called local consistency (lc-) preserving iff, for every given management base,
kb′ is consistent. It can be proved that a mMCS where all management functions
are lc-preserving is locally consistent. Algorithms for computing equilibria have re-
cently been proposed (see, e.g., [29] and the references therein). Notice that bridge
rules are intended to be applied whenever they are applicable. In [20], where mMCS
are adapted so as to continuous reasoning in dynamic environments, where contexts’
contents are updated by external input, the notion of a “run” is in fact introduced.
A run of mMCS M under a sequence Obs0, Obs1, . . . of observations is a sequence
R = 〈S0,KB0〉, 〈S1,KB1〉 . . . such that 〈S0,KB0〉 is a full equilibrium of M under
Obs0, and for i > 0 〈Si,KBi〉 is a full equilibrium of M under Obsi, where a full
equilibrium is obtained by taking the observations into consideration in every context
for bridge rules application: in fact, observation literals can occur in bridge rule bodies.

3 Agents as Computational Environments

In the approach that we present here, an agent is equipped with a number of Event-
Action modules for performing Complex Event Processing, and with a number of con-
texts which are known to the agent and to which the agent may resort for gathering
information. We assume the agent to be based upon its own underlying logic, and so
are the Event-Action modules and the contexts. Different Event-Action modules may
be based on different logics, depending upon the task they are supposed to perform: for
instance, some modules might be aimed at event interpretation, some others at learning
patterns from event occurrences, some others at evaluating possible courses of action,
etc.

In order to finalize an agent’s operation, we assume that each Event-Action module
admits just one acceptable sets of consequences, differently from MCSs where each
context may in principle admit several. In such case, we assume to choose one by means
of some kind of selection function. In [20] the problem is mentioned in the conclusions,
referring to unwanted sources of non-determinism that may arise. They thus suggest to
adopt a global preference criteria to fix the problem, and also mention some existing
preference functions that might be exploited. However, as seen below we will take the
problem as solved for contexts to which agents are able to refer to, so we will care only
about consequences selection for Event-Action modules.

Let a logic L be defined as reported in previous section.



Definition 1. Let a Logic with Preferences LP be a quadruple
(KBLP ;CnLP ;ACCLP ;P) where ACCLP is a function which extends the one
defined before for a logic L since it selects the “preferred” one among acceptable set
of consequences of the given knowledge base, according to the preference criterion P .

As seen, we leave the preference criterion as an open parameter, as each module
may in principle employ a different one. In general, a preference criterion is some kind
of device which induces a total order on CnLP . On one extreme it can even be random
choice, though in general domain/application-dependent criteria will be better suited.

Similarly to what is done in Linear Time Logic (LTL), we assume a discrete, linear
model of time where each state/time instant can be represented by an integer number.
States t0, t1, . . . can be seen as time instants in abstract terms. In practice we will have
ti+1 − ti = δ, where δ is the actual interval of time after which we assume a given
system to have evolved. In particular, agent systems usually evolve according to the
perception of events (among which we include communications with other agents).

Definition 2. Let Π = Π1, Π2, . . . be a sequence of sets of events, where Πi is as-
sumed to have been perceived by given agent at time i > 0. Each event in Π , say E,
can be denoted as E : ti where ti is a time-stamp indicating time i, and meaning that
E ∈ Πi. By E : [ti, tj ] with 1 ≤ i ≤ j we mean that E persists during an interval, i.e.,
we have E : ts for every i ≤ s ≤ j.

A number of expressions can be defined on events, for instance:E1, . . . , Ek : [ti, tj ]
to mean that all the Eis, i ≤ k, persist in given interval; E1, . . . , Ek \ E : [ti, tj ]
intending that all the Eis persist in given interval, where E does not occur therein. We
do not go into the detail, but we assume that some syntax is provided for defining Event
Expressions, where each such expression can be evaluated to be true or false w.r.t. Π .

Definition 3. LetH be a set of sequences of sets of events as defined above, i.e.,Π ∈ H
is of the formΠ = Π1, Π2, . . . Let E be a set of event expressions and let evE : E ,H →
{true, false} be an evaluation function which establishes whether an event expression
ε ∈ E is true/false w.r.t. Π ∈ H.

Below we define Event-Action modules, which include an event expression that
functions as a trigger, meaning that the module is evaluated whenever the given event
expression is entailed by the present event sequence. Event-Action modules may re-
sort to bridge rules for obtaining knowledge from both external contexts, and from the
agent’s knowledge base. They elicit, by means of some kind of reasoning, complex
events that may have occurred and/or actions that the agent might perform. In case
several possibilities arise, preferences are employed to finalize the reasoning.

Definition 4. We let an Event-Action module be defined as M =
(LM

P ; kbM ; brM ;mngM ; trM ) where LM
P
i is a Logic with Preferences (as de-

fined above) and kbM ∈ KBLM
P is a knowledge base. brM is a set of bridge rules of

the form defined for mMCS (seen in previous section), and mngM is the management
function adopted by the module. trM is an event expression which triggers the module
evaluation, where trM belongs to a given set E associated to evaluation function evE .



Definition 5. An Event-Action module M is active w.r.t. sequence Π of sets of events
(or simply “active” if leaving Π implicit) iff evE(trM , Π) = true, i.e., if Π enables
the module evaluation.

Complex events and/or actions derived from the evaluation of an active Event-
Action module will be included in its set of consequences, whose contents will also
depend upon bridge-rules application.

An agent program can be defined in any agent-oriented computational-logic-based
programming language, such as, e.g., DALI (cf. [22, 23]), AgentSpeak (cf. [30, 31] and
the references therein), GOAL (cf. [32] and the references therein) 3APL (cf. [33] and
the references therein), METATEM (cf. [34] and the references therein), KGP (cf [36]
and the references therein), or any other (cf. [35] for a survey). So, to our purposes
we provide a very simple general definition of a basic agent, able to encompass any of
the mentioned approaches. Only, we add bridge rules, in a form which allows an agent
to access contexts, and to incorporate Event-Action modules results that can be either
complex events or complex actions.

Definition 6. We let a basic agent be defined as A = (LA; kbA; brA,mng
A) where LA

is a logic, kbA ∈ KBLA
is a knowledge base (encompassing the agent program), and

brA is a set of bridge rules of the form:

o(s)← B1, . . . , Bj,
notCj+1, . . . , notCk.

where, for j > 0, k ≥ 0, each of the Bs and Cs can be in one of the following forms,
where p is an atom: (i) (c : p) where c is a context. (ii) (m : ce : p) or (m : act : p)
where m is an Event-Action module, ce is a constant meaning “complex event” and
act is a constant meaning “complex action”.mngA is the management function which,
analogously to what seen before for mMCSs, incorporates the conclusion o(s) of bridge
rules into the agent’s knowledge base.

Thus, agent A can update its knowledge base according to what can or cannot be
concluded by a set of contexts and Event-Action modules and according to its own
knowledge management policies.

Definition 7. An Agent Computational Environment (ACE) A is a tuple

〈A,M1, . . . ,Mr, C1, . . . , Cs〉

where, for r, s ≥ 0, A is a basic agent, the Mis are Event-Action modules and the Cis
are contexts in the sense of MCSs1. All components can include bridge rules. For the
basic agent A they are of the form just seen above. For the other components they are
of the form seen for mMCSs, with the following restrictions on bridge rule bodies: both
contexts and the basic agent A can be mentioned in bodies of bridge rules in the Mis;
only contexts can be mentioned in bodies of bridge rules in the Cis.

1 The acronym “ACE” emerged by chance: nevertheless, with the occasion the author wishes to
dedicate the ACE approach to the memory of Alan Turing.



That is, contexts can only query other contexts; Event-Action modules can query
contexts, but also the basic agent (thus, they have some access to its knowldedge base);
the basic agent can query every component (and will in general interact with the envi-
ronment and with other agents).

Definition 8. LetA = 〈A1, . . . , Ah〉 be an ACE, defined as above (i.e., the Ais include
the basic agent, and, possibly, Event-Action modules and contexts). A data state ofA is
a tuple S = (S1, . . . , Sh) such that each of the Sis is an element of Cni, according to
the logic in which Si is defined.

As for MCSs, desirable data states are those where each Si is acceptable according
to ACCi, taking bridge rules application into account. However, bridge rules applica-
bility here is different. In fact, it is required that each Event-Action module which is
queried is also active. So, the app function must be extended w.r.t. mMCSs, as for de-
termining which bridge rules can be applied in a certain data state it will have to take
into consideration also the sequence of sets of events occurred so far.

Definition 9. Let S be a data state of ACEA, and letΠ be a sequence of sets of events.
A bridge rule ρ is applicable in S given Π iff every Event-Action module mentioned
in the body is active w.r.t. Π , and for every positive literal in the body referring to
component Ai the atom occurring therein belongs to Si and for every negative literal
in the body referring to component Ai the atom occurring therein does not belong to
Si. Let app(S,Π) be the set of bridge rules which are applicable in a data state S w.r.t.
sequence of sets of events Π .

We can extend to ACEs the definition of equilibrium already provided for mMCSs.

Definition 10. A data state S = (S1, . . . , Sn) of ACE A is an equilibrium w.r.t.
sequence of sets of events Π , and is then denoted as ΞA

Π , iff for 1 ≤ i ≤ n,
kb′i = Si ∈ ACCi(mngi(app(S,Π), kbi)) .

For every component which based upon a preferential logic (i.e., at least Event-
Action modules) ACCi is, as said before, univocal. It is easy to see that if the set of
contexts included in ACE A constitutes in itself an mMCS which admits equilibria,
then also A does so. As soon as the sequence of set of events acquires more elements
over time, this determines new equilibria to be formed.

Definition 11. Given ACEA and sequence of sets of events Π = Π1, Π2, . . . ,Πk, . . .,
the corresponding ACE-Evolution is the sequence of equilibria ΞA

Π1 ,ΞA
Π1,Π2 , . . . ,

ΞA
Π1,Π2,...,Πk , . . .

This implies that each Event-Action module is either evaluated or not in different
stages of an ACE’s evolution. In case a bridge rule queries a module which at that
stage is not active, no result will be returned. This is a departure from MCSs, where
each literal in a bridge rules is supposed to always evaluate to either true or false. In
case of ACEs, some bridge rules will be “idle” at some evolution stages, i.e., unable to
return results. Results may anyway have been returned previously or may be returned
later, whenever the involved modules become active. Event-Action modules might be



for instance defined in ETALIS, or in Reactive Answer Set Programming [37], or in
Abductive Logic Programming or in many other formalisms.

For lack of space we cannot discuss verification. However we may notice that via
LTL (Linear Temporal Logic), interesting properties of an ACE can be defined and
verified. For instance, for proposition ϕ it can be checked whether ϕ holds for agent A
in some equilibrium reached at a certain time or within some time interval.

4 Event-Action Modules in DALI

The ACE framework is especially aimed at designing agent-based computational envi-
ronments involving heterogeneous components. Purposely, the proposal does not make
assumptions about the logics and the preference rules the various component are based
upon. In order to make the proposal less abstract by demonstrating its practical ap-
plicability, in this section we however report about an experiment that we have been
developing in DALI, where: the basic agent is a DALI agent; contexts are simply pro-
log knowledge bases; Event-Action modules are defined in a DALI-like syntax, and are
then translated into Answer Set Programming (ASP), and thus executed by means of
the ASP plugin which has been integrated into the DALI interpreter. ASP is in fact quite
suitable for obtaining plausible scenarios from a set of constraints. Several approaches
to preferences have been defined for ASP: cf., e.g., [20] and the references therein, and
also [38–41] and [42, 43]). The translation is discussed in the next section.

In the examples below syntax is reminiscent of DALI, which is a prolog-like lan-
guage with predicates in lowercase and variables in uppercase. Postfix E designs a
predicate as an event, postfix A as an action, and postfix P an event which has occurred
in the past. Special keywords indicate, for the convenience of programmers and readers,
different parts of each module. However, there is no special reason for adopting these
keywords rather than any other syntax.

4.1 Examples of Event-Action Modules

Deriving Complex Events The following example illustrates an Event-Action module
evaluating symptoms of either pneumonia, or just flu, or both (clearly, we do not aim
at medical precision). The Event-Action module will be activated whenever its trigger-
ing events occur within a certain time interval, and according to specific conditions: in
the example, the module is evaluated whenever in the last two days both high temper-
ature and intense cough have been recorded. For the sake of conciseness the example
is propositional, thus referring to an unidentified single patient. In general, it might, by
means of introducing variables, refer to a generic patient/person.

EVENT-ACTION-MODULE diagnosis

TRIGGER
(high temperatureE AND intense coughE) : [2days]

COMPLEX EVENTS
suspect flu OR suspect pneumonia



suspect flu :- high temperatureP .
suspect pneumonia :- high temperatureP : [4days], intense coughP .
suspect pneumonia :-

diagnosis(clinical history , suspect pneumonia) : diag knowledge base.
PREFERENCES
suspect flu :- patient is healty .
suspect pneumonia :- patient is at risk .
ACTIONS
stay in bedA :- suspect flu.
take antibioticA :- suspect flu,

high temperatureP : [4days], not suspect pneumonia.
take antibioticA :- suspect preumonia.
consult lung doctorA :- suspect preumonia.
MANDATORY
suspect preumonia :- high temperatureP : [4days],

suspect fluP , take antibioticP : [2days].

From given symptoms, either a suspect flu or a suspect pneumonia or both can be
derived. This is stated in the COMPLEX EVENTS section, which in general lists the
complex events that the module might infer from the given definition. For suspecting
pneumonia high temperature should have lasted for at least four days, accompanied by
intense cough. Pneumonia is also suspected if the patient’s clinical history suggests this
might be the case. This is an example of a bridge rule, as the analisys of clinical history
is demanded to an external context, here indicated as diag knowledge base. Notice
that, in our implementation, every predicate not defined within the module is obtained
from the agent’s knowldge base via a standard bridge rule, that might look, for agent
Ag, of the form A :-A : Ag. As stated before in fact, in an ACE every Event-Action
module has access, via bridge rules, to the basic agent knowledge base.

Explicit preferences are expressed in the PREFERENCES section. A conclusion is
preferred if the conditions are true: therefore, in this case it is stated that hypothesizing
a flu should be preferred in case the patient is healthy, while pneumonia is the preferred
option for risky patients. Actions to undertake in the two cases are specified, and the
agent can access them via bridge rules. In this case, if a flu is suspected then the patient
should stay in bed, and if the high temperature persists then an antibiotic should also
be assumed (even if pneumonia is not suspected). In case of suspect pneumonia, an
antibiotic is mandatory, plus a consult with a lung doctor.

The MANDATORY section of the module includes constraints, that may be of vari-
ous kinds: in this case, it specifies which complex events must be mandatorily inferred
in module (re)evaluations if certain conditions occur. Specifically, pneumonia is to be
assumed mandatorily whenever flu has been previously assumed, but high temperature
persists despite at least two days of antibiotic therapy.

Monitoring the Environment The next Event-Action-module models an agent’s be-
havior if encountering a traffic light. The triggering events are the presence of the traffic
light, and the color of the traffic light as perceived by the agent. The objective of the
module is to assess whether the observed color is correct (CHECK section), to detect
and manage possible anomalies, and to determine what to do then. The module evalu-
ates as correct any color which is either red or yellow or green. Section ANOMALIES



detects violations to the the expected color or color sequence which is, namely, yel-
low after green, red after yellow and green after red. Actions for both the normal and
anomalous case are specified. Postfix P indicates the last previous value of an event.

Thus, if the agent meets a traffic light which is, say, red, then the agent stops, and the
event colorE(tl, red) is recorded as a past event in the form colorP (tl, red). If, after
some little while, the event colorE(tl, green) arrives, then the module is re-evaluated
and the agent passes. The ANOMALIES section copes with two cases: (i) the color is
incorrect, e.g., the traffic light might be dark or flashing; (ii) the agent has observed the
traffic light for a while, and the color sequence is incorrect. This is deduced by com-
paring the present color colorE (tl , c1 ) with previous color colorP(tl , c2 ). Actions to
undertake in case of anomaly are defined, that in the example imply passing with cau-
tion and reporting to the police in the former case, and choosing another route and
reporting to the police in the latter. Anomaly detection is in our opinion relevant, as
anomalies in event occurrence may be considered themselves as particular (and some-
times important) instances of complex events.

EVENT-ACTION-MODULE traffic

TRIGGER traffic lightE(tl) AND colorE(tl ,C )
CHECK
color ok(tl ,C ),C = red XOR
color ok(tl ,C ),C = green XOR
color ok(tl ,C ), C = yellow :- colorE(tl ,C )

ANOMALIES
anomaly1 (tl) :- colorE(tl ,C ), not color ok(tl ,C ).
anomaly2 (tl) :- colorE(tl , red), not colorP(tl , yellow).
anomaly2 (tl) :- colorE(tl , yellow), not colorP(tl , green).
anomaly2 (tl) :- colorE(tl , green), not colorP(tl , red).

ACTIONS
stopA :- color ok(tl , red).
stopA :- color ok(tl , yellow).
passA :- color ok(tl , green).

ANOMALY MANAGEMENT ACTIONS
pass with cautionA,
report to policeA(tl) :- anomaly1 (tl).
stopA,
change wayA,
report to policeA(tl) :- anomaly2 (tl)

Generating Complex Actions The last example is related to what happens when
two persons meet. In such a situation, it is possible that the one who first sees the
other smiles, and then either simply waves or stops to shake hands: section RE-
LATED EVENTS specifies, as a boolean combination, events that may occur contex-
tually to the triggering ones. Some conditions are specified on these events, for instance
that one possibly smiles and/or waves if (s)he is neither in a bad temper nor angry at
the other person. Also, one who is in a hurry just waves, while good friends or people
who meet each other in a formal setting should shake hands. In this sample formula-
tion, actions simply consist in returning what the other one does, and it is anomalous



not doing so (e.g., if one smiles and the other does not smile back). The expression
meet friend(A,F ) means that agent A meets agent F : then, each one will possibly
make some actions and the other one will normally respond. This module is totally re-
vertible, in the sense that it manages both the case where “we” meet a friend and the case
where vice versa somebody else meets us. This is the reason why in some module sec-
tions events have no postfixes. In fact, meet friend(A,F), smile, wave and shake hands
are present events if a friend meets “us”, and are actions if “we” meet a friend.

Postfixes appear in the ACTIONS and ANOMALY sections, where all elements
(whatever their origin) have become past events to be coped with. The PRECONDI-
TIONS section expresses action preconditions, via connective :< . Section MANDA-
TORY defines obligations, here via a rule stating that it is mandatory to shake hands in
a formal situation. The anomaly management section may include counter-measures to
be taken in case of unexpected behavior, that in the example may go from asking for
explanation to getting angry, etc.

EVENT-ACTION-MODULE meet

TRIGGER meet friend(A,F ),
RELATED EVENTS
smile(A,F )OR (wave(A,F ) XOR shake hands(A,F ))

PRECONDITIONS
smileA(A,F ) :<not angry(A,F ), not bad temper(A).
waveA(A,F ) :<not angry(A,F ).
shake handsA(A,F ) :<

good friends(A,F ), not angry(A,F ), not in a hurry(A), not in a hurry(F ).

MANDATORY
shake handsA(A,F ) :- formal situation(A,F ).

ACTIONS
smiled(X,Y ) :- smileP(X,Y ).
waved(X,Y ) :- waveP(X,Y ).
shaken hands(X ,Y ) :- shake handsP(X ,Y ).
smileA(A,F ) :- smiled(F,A).
waveA(A,F ) :- waved(F,A).
shake handsA(A,F ) :- shaken hands(F ,A).

ANOMALY
anomaly1 (meet friend(A,F )) :- smileP(A,F ), not smileA(F,A).
anomaly2 (meet friend(A,F )) :- waveP(A,F ), notwaveA(F,A).
anomaly3 (meet friend(A,F )) :- shake handsP(A,F ), not shake handsA(F,A).
ANOMALY MANAGEMENT ACTIONS
. . .

5 ASP Representation of DALI Event-Action Modules

The examples that we have illustrated above have been presented in a DALI-like syn-
tax. However, DALI (being a prolog-like language with a minimal model semantics
[44]) cannot account for the different scenarios outlined by Event-Action modules. In
fact, each module can perform a selection (according to conditions and preferences)
among different complex events or complex actions that might result from the given



simple events and the available complex events/actions description. In order to suit-
ably implement such intended behavior, we have devised a prototypical implementation
where Event-Action modules are translated into Answer set programs. Answer set pro-
gramming (ASP) is nowadays a well-established and successful programming paradigm
based upon answer set semantics [24, 45–47], with applications in many areas (cf., e.g.,
[25, 27, 26] and the references therein). An answer set program may have several an-
swer sets, each one representing a solution of the problem encoded in the program. As
seen below, each Event-Action module can be translated in a fully automated way into
an ASP module.

The way of evaluating Event-Action modules within a DALI ACE basic functioning
is the following.

– At each agent’s evolution step, i.e., when new events have been perceived, ASP
modules corresponding to Event-Action modules are (re-)evaluated given the his-
tory of all events perceived, and the agent’s current knowledge base. It is required to
re-evaluate a module whether the condition in the TRIGGER headline is satisfied.
As seen, this condition is specified in terms of a boolean combination of present
and/or past events. DALI is equipped with timestamps and time intervals and is
thus able to perform such evaluation.

– A module will admit as a result of evaluation none, one or more answer sets. Non-
existence of answer sets can result from constraint violation, and implies that no
reaction to triggering events can be determined at present.

– If the module admits answer sets, one answer set among the available ones must be
selected. Answer set selection is performed according to the preferences expressed
in section PREFERENCES. If there are answer sets which are equally preferred,
the current solution in the prototypical implementation is random choice. Methods
for choosing answer sets according to preferences are discussed for instance in [48,
38].

5.1 Answer Set Programming (ASP) in a Nutshell

Answer Set Programming (ASP) is a logic programming paradigm based upon logic
programs with default negation under the answer set semantics, which [24, 45]. This
semantics considers logic programs as sets of inference rules (more precisely, default
inference rules). In fact, one can see an answer set program as a set of constraints on
the solution of a problem, where each answer set represents a solution compatible with
the constraints expressed by the program. The reader may refer, among many, to [24,
45, 25, 27] for a presentation of ASP as a tool for declarative problem-solving.

Syntactically, an answer set program (or, for short, just “program”)Π is a collection
of rules of the form H ← L1, . . . , Lm, not Lm+1, . . . , not Lm+n where H and each
Lis, m ≥ 0 and n ≥ 0, are atoms. Symbol ← is usually indicated with :- in prac-
tical systems. An atom Li and its negative counterpart notLi are called literals. The
left-hand side and the right-hand side of the clause are called head and body, respec-
tively. A rule with empty body is called a fact. A rule with empty head is a constraint,
where a constraint of the form← L1, ..., Ln. states that literals L1, . . . , Ln cannot be
simultaneously true in any answer set.



A program may have several answer sets, each of which represents a solution to
the given problem which is consistent w.r.t. the problem description and constraints. If
a program has no answer set, this means that no such solution can be found. and the
program is said to be inconsistent (w.r.t. consistent).

In practical terms, a problem encoded by means of an ASP program is processed
by an ASP solver which computes the answer set(s) of the program, from which the
solutions can be easily extracted by abstracting away from irrelevant details. Several
well-developed answer set solvers [49] can be freely downloaded by potential users.
All solvers provide a number of additional constructs and features useful for practi-
cal programming, that for simplicity we do not consider here. Solvers are periodically
checked and compared over well-established benchmarks, and over challenging sample
applications proposed at the yearly ASP competition (cf. [50]). The expressive power
of ASP and its computational complexity have been deeply investigated [51].

5.2 Translation Guidelines

The answer set programming (module) Π corresponding to a given Event-
Action module is obtained by translating into ASP the contents of sections
COMPLEX EVENTS, CHECK, RELATED EVENTS, ANOMALIES and MANDA-
TORY. The translation can be fully defined and automated. Sections ACTIONS,
ANOMALY MANAGEMENT ACTIONS and PRECONDITIONS do not need transla-
tion, as they are in fact composed of logic programming rules which by definition are
ASP rules. So, these sections are just copied (with some minor modifications seen be-
low) into the ASP version of the given Event-Action module. Notice that we do not need
stream or reactive answer set programming, as triggers and time intervals are coped
with by the underlying DALI interpreter. Each module resulting from the translation
is evaluated in the standard ASP fashion whenever the conditions for doing so occur.
The translation can be in particular performed by exploiting the following ASP pat-
terns. Please consider that ASP solvers provide sophisticated and flexible programing
constructs for expressing many of these patterns. However, for the sake of clarity we
consider only the basic simple forms listed below.

conj In ASP, the conjunction among a number of elements a1, . . . , an is simply ex-
pressed as conj ← a1, . . . , an.

or-xor Disjunction between two elements a and b is expressed by the cycle a ←
not b b ← not a. This disjunction is not exclusive, since either a or b or both
might be derived elsewhere in the program. To obtain exclusive disjunction, a con-
straint← a, b must be added. A constraint in ASP can be read as it cannot be that
all literals in the body are true. In the case of the exclusive disjunction of a and b,
it cannot be that both a and b belong to the same answer set. Disjunction can also
be expressed on several elements.

choice Choice, or possibility, or hypothesis, expressing that some element a may or
may not be included in an answer set, can be expressed by means of a cycle in-
volving a fresh atom, say na. The cycle is of the form a ← not na na ← not a.
Therefore, an answer set will contain either a or na, the latter signifying the ab-
sence of a.



choyf Makes the choice pattern stronger: element a can be in fact chosen only if cer-
tain conditions Conds are satisfied, is expressed by a choice pattern plus a rule
c ← Conds and a constraint ← a, not c. The constraint states that a cannot be
hypothesized in an answer set if c does not hold, i.e., if Conds are not implied by
that answer set.

mand Mandatory presence in an answer set of atom a defined by rule a← Body when-
ever Body is implied by that answer set can be obtained as follows. In addition to
the defining rule a← Body , a constraint must be added of the form← not a,Body
stating that it cannot be that an answer set implies Body but does not contain a. The
constraint is necessary for preventing a to be ruled out by some other condition oc-
curring elsewhere in the program.

Specifically, the translation can be performed by means of the following guidelines
(a full and formal definition of the translation is not possible here for lack of space).

– Sections COMPLEX EVENTS and RELATED EVENTS are basically coped with
by the conj and choice patterns. More involved combinations of events may require
the choyf and or-xor patterns.

– Constraints in the MANDATORY section can be expresses by means of the mand
pattern.

– Sections CHECK and ANOMALIES can be either translated by a plain transposition
of their rules into ASP, or by exploiting the conj and or-xor patterns.

5.3 Translation Example

We provide below an example of translation, considering the Event-Action module ’di-
agnosis’ that we have presented before. Notice preliminarly that, for each past event
evP , it is possible to specify atoms of the form evP(N ,M ) where M is a unit of time
(specifically,M can be seconds, minutes, days) andN is a number of units of time. Such
an atom is evaluated by means of a plugin, and returns true (succeeds) in case event ev
has been recorded at least once for each of the N time units. E.g., evP(4 , days) suc-
ceeds whenever event ev has occurred, and has consequently been recorded as a part
event, at least once a day for four days. A plugin is also provided for bridge rules:
in fact, each atom p(args) : c occurring in the body of such a rule is transformed into
p(args, c) and evaluates to true (with suitable instantiations of the arguments) if context
c returns the corresponding answer.

Concerning the Complex Events section, the translation procedure exploits the or
pattern for the expression:

suspect flu OR suspect preumonia

and then just copies the remaining rules of the section, with suitable syntactic rearrange-
ments. The result is the following:

suspect flu :-not suspect pneumonia.
suspect pneumonia :-not suspect flu.
suspect flu :- high temperatureP .
suspect pneumonia :- high temperatureP(4 , days), intense coughP .
suspect pneumonia :-

diagnosis(clinical history , suspect pneumonia, diag knowledge base).



Translation of the MANDATORY section, i.e.:

suspect preumonia :-
high temperatureP : [4days], suspect fluP , take antibioticP : [2days].

exploits the mand pattern, with result

:-not suspect preumonia,
high temperatureP(4 , days), suspect fluP , take antibioticP : (2 , days).

Rules in the ACTIONS section are just copied (modulo minor rearrangements), with
result:
stay in bedA :- suspect flu.
take antibioticA :- suspect flu,

high temperatureP(4 , days), not suspect pneumonia.
take antibioticA :- suspect preumonia.
consult lung doctorA :- suspect preumonia.

Adapting the notation of [42], the PREFERENCES section

suspect flu :- patient is healty .
suspect pneumonia :- patient is at risk .

would be translated into the conditional p-lists:

suspect flu > suspect pneumonia :- patient is healty .
suspect pneumonia > suspect flu :- patient is at risk .

The (prototypical) Raspberry inference engine [52] would then be able to execute the
resulting program, thus returning the preferred answer set. The recent aspirin system
[38] might also be used.

6 Related Work Concluding Remarks

In this paper we have proposed ACE, as a framework for the design of component-based
agent-oriented environments where a “main” agent program, the basic agent, is enriched
with a number of Event-Action modules for Complex Event Processing and complex
actions generation, and with a number of external data sources that can accessed via
bridge rules, borrowed from MCSs. Components of an ACE are in principle heteroge-
neous, though we assume them to be based upon Computational Logic. The only con-
dition for employing any computational-logic-based language for defining ACE agents
or Event-Action modules is that such language must be extended with the possibility
of defining bridge rules: this improvement should not however imply either semantic
or technical difficulties. We have proposed a formalization and a semantics for ACE.
We have also discussed a prototypical experimentation of the approach in the DALI
agent-oriented programming language, employing ASP as an implementation tool.

A research work which is related to the present one is DyKnow [53], which is a
knowledge processing middleware framework providing software support for creating
streams representing high-level events concerning aspects of the past, current, and fu-
ture state of a system. Input is gathered from distributed sources, can be processed at



many different levels of abstraction, and finally transformed into suitable forms to be
used by reasoning functionalities. A knowledge process specification is understood as
a function. DyKnow is fully implemented, and has been experimented in UAVs (Un-
manned Aerial Vehicles) applications.

ACE can be considered as a generalization of such work, in that ACE: (i) is agent-
oriented; (ii) is aimed at managing heterogeneity in the definition/description of knowl-
edge sources, that moreover can interact among themselves and with external sources;
(iii) is aimed at providing a uniform semantics of single components and of the overall
system; (iv) is aimed at allowing for verification of properties.

Several future directions are ahead of us. First, simple preferences are just one pos-
sible way of selecting among plausible alternatives. More generally, we plan to consider
also informed choice deriving from a learning process: i.e., an agent should learn from
experience what is the “best” interpretation to give to a situation, or which are the pref-
erence criteria to (dynamically) adopt. Learning should be a never-ending process, as
different outcomes might be more plausible in different contexts and situations. Verifi-
cation of ACE systems is a very relevant aspect to be coped with. We believe that both a
priori verification and run-time assurance (cf., e.g., [54]) should be combined for ensur-
ing desirable properties of this kind of systems. Formalization and verification of MASs
(Multi-Agent Systems) composed of ACE agents is a further important issue that we
intend to consider. ACE agent systems can in principle be part of DACMACSs (“Data-
Aware Commitment-based MASs”). The approach of DACMACS, recently proposed
in [55, 56] as an extension of DACMAS [57], includes (like in DACMAS) the element
of logical ontologies within Multi-Agent systems, but also allows agents of the MAS
to query heterogeneous external contexts, possibly with bi-directional interchange of
ontological definitions.
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30. Bordini, R.H., Hübner, J.F.: BDI agent programming in agentspeak using Jason (tutorial
paper). In Toni, F., Torroni, P., eds.: Computational Logic in Multi-Agent Systems, 6th
International Workshop, CLIMA VI, Revised Selected and Invited Papers. Volume 3900 of
Lecture Notes in Computer Science., Springer (2006) 143–164

31. Rao, A.S., Georgeff, M.P.: Modeling agents within a BDI-architecture. In Fikes, R., Sande-
wall, E., eds.: Proc. of Intl. Conf. on Principles of Knowledge Representation and Reasoning
(KR), Cambridge, Massachusetts, Morgan Kaufmann (1991)

32. Hindriks, K.V., van der Hoek, W., Meyer, J.C.: GOAL agents instantiate intention logic. In
Artikis, A., Craven, R., Cicekli, N.K., Sadighi, B., Stathis, K., eds.: Logic Programs, Norms
and Action - Essays in Honor of Marek J. Sergot on the Occasion of His 60th Birthday.
Volume 7360 of Lecture Notes in Computer Science., Springer (2012) 196–219

33. Dastani, M., van Riemsdijk, M.B., Meyer, J.C.: Programming multi-agent systems in 3apl.
In Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E., eds.: Multi-Agent Program-
ming: Languages, Platforms and Applications. Volume 15 of Multiagent Systems, Artificial
Societies, and Simulated Organizations. Springer (2005) 39–67

34. Fisher, M.: MetateM: The story so far. In Bordini, R.H., Dastani, M., Dix, J., Fallah-
Seghrouchni, A.E., eds.: PROMAS. Volume 3862 of Lecture Notes in Computer Science.,
Springer (2005) 3–22

35. Bordini, R.H., Braubach, L., Dastani, M., Fallah-Seghrouchni, A.E., Gómez-Sanz, J.J., Leite,
J., O’Hare, G.M.P., Pokahr, A., Ricci, A.: A survey of programming languages and platforms
for multi-agent systems. Informatica (Slovenia) 30(1) (2006) 33–44

36. Bracciali, A., Demetriou, N., Endriss, U., Kakas, A., Lu, W., Mancarella, P., Sadri, F., Stathis,
K., Terreni, G., Toni, F.: The KGP model of agency: Computational model and prototype
implementation. In: Global Computing: IST/FET International Workshop, Revised Selected
Papers. LNAI 3267. Springer-Verlag, Berlin (2005) 340–367

37. Gebser, M., Grote, T., Kaminski, R., Schaub, T.: Reactive answer set programming. In Del-
grande, J.P., Faber, W., eds.: Logic Programming and Nonmonotonic Reasoning - 11th Intl.
Conf., LPNMR 2011, Proc. Volume 6645 of Lecture Notes in Computer Science., Springer
(2011)

38. Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: asprin: Customizing answer set prefer-
ences without a headache. In Bonet, B., Koenig, S., eds.: Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, AAAI Press (2015) 1467–1474

39. Bienvenu, M., Lang, J., Wilson, N.: From preference logics to preference languages, and
back. In: Proc. of the Twelfth Intl. Conf. on the Principles of Knowledge Repr. and Reasoning
(KR 2010). (2010) 414–424
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47. Marek, V.W., Truszczyński, M.: Stable logic programming - An alternative logic program-
ming paradigm. In: 25 years of Logic Programming Paradigm. Springer (1999) 375–398

48. Costantini, S., Formisano, A., Petturiti, D.: Extending and implementing RASP. Fundam.
Inform. 105(1-2) (2010) 1–33

49. Web-references: Some ASP solvers Clasp: potassco.sourceforge.net; Cmod-
els: www.cs.utexas.edu/users/tag/cmodels; DLV: www.dbai.tuwien.
ac.at/proj/dlv; Smodels: www.tcs.hut.fi/Software/smodels.

50. Calimeri, F., Ianni, G., Krennwallner, T., Ricca, F.: The answer set programming competi-
tion. AI Magazine 33(4) (2012) 114–118

51. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic
programming. ACM Computing Surveys 33(3) (2001) 374–425

52. Formisano, A., Petturiti, D.: Raspberry: an implementation of RASP (2010) URL: http:
//www.dmi.unipg.it/˜formis/raspberry/.

53. Heintz, F., Kvarnström, J., Doherty, P.: Bridging the sense-reasoning gap: Dyknow - stream-
based middleware for knowledge processing. Advanced Engineering Informatics 24(1)
(2010) 14–26

54. Costantini, S., De Gasperis, G.: Runtime self-checking via temporal (meta-)axioms for as-
surance of logical agent systems. In Bulling, N., van der Hoek, W., eds.: Proceedings of
LAMAS 2014, 7th Workshop on Logical Aspects of Multi-Agent Systems, held at AA-
MAS 2014. (2014) 241–255 Also in: Proceedings of the 29th Italian Conf. on Computational
Logic, CEUR Workshop Proceedings 1195.

55. Costantini, S.: Knowledge acquisition via non-monotonic reasoning in distributed hetero-
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